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positioning the sources in a sufficiently large distance from
discontinuities is reduced considerably.

In principle, the method presented includes the possibil-
ity for calculating planar stripline structures, where the
permittivity of the substrate is given by € =¢(x). In that
case, the partial differential equations for the scalar poten-
tials are of the Sturm—Liouville type [6].
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Short Papers

High-Order Mode Cutoff In Rectangular Striplines

CLAUDE M. WEIL, MEMBER, IEEE, AND LUCIAN GRUNER,
MEMBER, IEEE

Abstract —The higher order mode cutoff characteristics of rectangular
stripline structures, with thin center conductors, are discussed. Data are
given, using an alternative method of presentation, on the normalized
cutoff of the first eleven higher order modes. Discussions are included on
the physical reasons why cutoff is altered for some modes, relative to that
in rectangular waveguides, but not for others.

I. INTRODUCTION

Large-scale rectangular strip-transmission lines containing a
_propagating transverse electromagnetic (TEM) field are now
widely used for such purposes as electromagnetic susceptibility
and emissions testing, calibration of field probes and survey
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meters, and studies on the biological effects of radiofrequency
(RF) radiation exposure. These structures are characterized by an
air dielectric and a thin center conductor (septum) surrounded by
a rectangularly shaped shield. This provides for an optimally
sized test space within the line in which equipment, field probes,
or experimental animals, etc., are exposed to a well-defined and
reasonably uniform field. Crawford [1] has discussed the proper-
ties of such lines and has described a family of TEM “cells”
constructed at the National Bureau of Standards. These devices
are commercially available and have been termed “Crawford
Cells” or “TEM Transmission Cells” by their manufacturers.
The usable frequency range of these devices is of obvious
importance to those involved in their use. Whereas it had been
thought that these structures could not be used above the cutoff
frequency where the first higher order mode is predicted to occur
[2], it has recently been shown by Hill [3] that such is not
necessarily the case. In his important study, Hill has shown that
significant perturbation of the internal fields within the structure
exists primarily at certain discrete frequencies where resonances
of the higher order mode fields occur. Such resonances will occur
when the equivalent electrical length of the strip-transmission line

0018-9480 /84 /0600-0638$01.00 ©1984 IEEE
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limny is equivalent to multiples of a half-guide-wavelength
A g(mmy /2, for the particular higher order mode being considered,

1.€.
l(mn)=p>\g(r;1n)/2; p=19253!“' . (1)

The subscripts m, n denote the higher order mode. Substituting
(1) into the well-known relationship for wavelength in waveguides

1 1 1 @)

=

>\2 A g2 A 2(mn)
where A, represents the cutoff wavelength value, gives an
expression by which the various resonant frequencies fz () can
be predicted

2
C
fl%(mnp)=fcz(mn)+( z ) (3)

2l

c € s . .
where fy(uny = oS the velocity of light.

c(mn)

Note that the equivalent clectrical length /., given in (3)
generally exceeds the actual physical length of the transmission
line due to the presence of fringing fields at the line terminations.
The magnitude of this difference varies with the mode being
excited as well as the cross-sectional dimensions of the line and
depends on whether the termination is abrupt (i.c., the line has a
box-like shape with square ends) or gradual (tapered ends). Hill
[3] was able to derive empirical values of /,,, for two different
tapered cells, based on measured values of the resonant frequency
fr(mnp)- Attempts at predicting the fringing field correction are
presently being undertaken in order to confirm the accuracy of
Hill’s empirical estimates.

To what extent these structures are usable when higher order
mode resonances are present and whether or not they are usable
at frequencies between such resonances depends very much on
the particular application for which the transmission line is being
used and the manner in which it is loaded (i.e., the composition
and size of the object placed in the line). Some modes have been
shown to interact strongly with any sizable load within the line
while others interact little, owing to the differing field patterns of
these modes. For some applications such as, for example, field-
probe calibrations, it is possible to correct for the presence of the
higher order mode fields by alternately positioning the probe on
both sides of the center plate and averaging the two response
curves versus frequency.

Accurate prediction of the various resonant frequencies in
rectangular stripline structures using (3) requires a knowledge of
the cutoff frequency f,(,,,y for a number of the first higher order
modes that can propagate in such structures. The purpose of this
short paper is to review some of the existing data on this subject,
as well as to present some additional data, as yet unpublished, in
a form that is readily usable by those working with TEM-mode
cells.

II. CutoFF DATA

The higher order mode problem in rectangular coaxial struc-
tures (i.e., those with a center conductor of appreciable thickness)
has been independently studied by Brackelmann ez al. [4] and
Gruner [5]. Baier [6] published additional data on cutoff in
rectangular coaxial lines of varying dimensional parameters. More
recently, Gruner [7] published data on the TEj mode cutoff in
rectangular lines with thin center conductors (¢/b < 0.1 where ¢’
is the conductor thickness and ‘b’ is the vertical side-wall dimen-
sion; see Fig. 1). Details of the numerical techniques employed
are provided in both of Gruner’s papers and will not be further
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Fig. 1. Cross section of rectangular stripline structure.

48

™4

Tetmn) fe(10)=2e clmn)

et 22 [X) [} [ X3 [X) [}) os 09

Fig. 2 Normalized cutoff frequency versus the parameter w/a for five of the
altered modes (case a/b=2.0,t/b=0).

elaborated on here. Similar data for the TE;;, TM;;, and TM
modes were published by Tippet and Chang [9] in a NBS report
that has not been widely disseminated.

It has been shown [7], [9] that, for rectangular structures having
a zero-thickness center conductor, the cutoff frequency for all
modes with n-odd subscripts will be altered relative to that of its
rectangular waveguide counterpart where no center conductor is
present; ie.

TEm,2n+1
TMm.Zn—l

(m,n=0,1,2--)
(m,n=1,2,3---).

Cutoff for all of the remaining modes having n-even subscripts
(m,n=0,1,2---, m#n+0)
(m,n=1,2,3---)

TEm ,2n
™

m.2n

remain unchanged relative to that of their waveguide counterpart.
The physical reasons for this effect are discussed in the mext
section. For the unaltered modes, the normalized cutoff frequency,
relative to that of the dominant TE,, mode, can be conveniently
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expressed as follows:

f((mn) _ 2a

=ym?+n*(a/b)

where ‘a’ is the horizontal width dimension; see Fig. 1. Of the
modes where cutoff values are altered, the first four are of
particular significance, namely the TE,;, TE,;, TE,;, and TM,,
modes. Fig. 2 shows the normalized frequency cutoff
(fecmmy/Foqoy) versus the dimensional ratio w/a, where ‘w’ is the
horizontal width of the center plate for five of the altered modes.
These curves are shown for an aspect ratio value of a/ib = 2.0;
changing the aspect ratio significantly alters the normalized cutoff
values.

The curves of Fig. 2 represent the traditional manner in which
cutoff data have been presented. This method of presentation is
not optimal because, in practice, most rectangular striplines
possess a fixed characteristic impedance, Z, (usually 50 &) but
use differing aspect ratio values that cover the range 0.5 < a /b <
2. It is felt that the data can be better interpreted if the normal-
ized cutoff data are presented as a function of the aspect ratio
over the range 0 < a /& < 2 for various chosen values of Z;. This
has been done in Fig, 3 which shows normalized cutoff data for
the four altered modes; seven of the unaltered modes are also
included for comparison purposes. The dotted lines represent the
limiting case for a rectangular waveguide with no center strip
present. Additional higher order modes such as, for example, the
TEy;, TEg4, -+ TE.3, TEy,,- - -, TEo;, TEoy,- - -, etc., are only
significant for structures with @ /b < 0.5 and have been omitted
from Fig. 3 in order to avoid excessive detail. The curves of Fig, 3
were generated using the characteristic impedance data shown in
Fig. 4, i.e., the required value of w/a could be determined for
given values of Z, and a/b. The data of Fig. 4 were obtained

(4)

fcilO) Ac(mn)
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using the technique described by Weil and includes a correction
for the edge-interaction effect [10]. Note that the data given in
Figs. 3 and 4 of Tippet and Chang [9] for the TE,; and TM;,
cutoff agree well with the data shown in Fig. 3.

IIL.

The data presented in Fig. 3 show well how the presence of the
center conductor in the rectangular structure alters the cutoff of
certain modes relative to that in rectangular waveguide. It can be
clearly seen that, for the three altered TE-modes (TE,, TE,,,
and TE,,), the cutoff frequencies are reduced, with the reduction
increasing markedly as the characteristic impedance value is
lowered. It is evident that, for a 50-8 line, the first higher order
mode is always the TE, for a/b <1.94.

Such effects are physically explainable as follows: for all of the
TE-modes having even numbered values of the y-axis subscript
‘n’, there exists an electrical wall along the x-axis, parallel to the
center conductor (see Fig. 1). This means that for the n-even case,
the E-field level is zero along the x-axis and no capacitive
coupling can exist between the center-strip edges and the vertical
side walls. Consequently, the presence of the center strip does not
alter cutoff for the n-even modes. For the TE-modes having
n-odd subscripts, however, the reverse situation exists. A mag-
netic wall, where maximum E-field exists, is present along the
x-axis. Capacitive coupling now exists between the center-strip
edges and the vertical side walls that causes the structure to
appear electrically larger in the vertical b-dimension than its
actual physical dimension. Consequently, cutoff frequencies are
lowered for these modes relative to their rectangular waveguide
counterparts, as seen in Fig. 3.

The electrical enlargement of rectangular structures in the
b-dimension is a useful concept for explaining the changes in the
cutoff characteristics of the altered TE-modes. If b’ represents
the enlarged dimension (i.e., the vertical height of the equivalent
rectangular waveguide without center strip), then, for the TE,
mode, the normalized cutoff frequency is given by

DiscussioN

2a a
b

= 5

>\1(01) ( )
By inverting the TE, cutoff data in Fig. 3, a plot of the
normalized cutoff wavelength against b/a is obtainable, ie.,

Ay /2a="b'/a against b/a.
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For lines with very low characteristic impedance (Z, — 0), the
center plate occupies an increasingly larger proportion of the
rectangular width, a of the structure. For this case, the center
strip coupling becomes large so that »’> b and a/b' — 0.
Hence, from (4), it is evident that, for this case, 2a /A ;) — 0 for
all a/b. Similarly, for the cases of the TE;; and TE,; modes, it
can be seen that 2a /A4y~ 1 and 2a /A5y, — 2 for all a/b.
Both Gruner’s and Baier’s results for the rectangular coaxial line
[5], [6] confirm the above.

Referring back to Fig. 3 again, it is apparent that, for the only
alteted TM-mode shown (TM;;), the cutoff frequency is in-
creased. Whereas when no center conductor is present (waveguide
case), the TM;; mode will always propagate before the TE,,
mode, this situation generally becomes reversed when the center
strip is present. For the case of a 50-Q line, it is apparent that the
TE; cutoff is below that of the TM,; mode for all a/b > 0.9.
Note that the presence of a relatively narrow center strip (w/a <
0.2) causes a marked increase in the TM;; cutoff, but that this
increase does not exceed that corresponding to the TM;, cutoff.
In fact, for lines with Z, < ~ 70 Q, the TM,; cutoff is essentially
the same as that for the TM,;, mode. In this case, when the center
conductor occupies an appreciable fraction of the width (0.6a or
more), it apparently acts as an electrical wall, causing the TM;
mode field structure to break up into a TM,, structure that
contains an H-field null along the x-axis. These results are
confirmed by Gruner’s data [S] which show the curves for the
TMy; and TM;, cutoff, as well as those for the TM,, and TM,,
modes merging for values of w/a > 0.6.
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Field Patterns and Resonant Frequencies of
High-Order Modes in an Open Resonator

PING KONG YU, MEMBER, IEEE, AND KWAI MAN LUK,
STUDENT MEMBER, IEEE

Abstract —Using the electromagnetic perturbation theory, it is shown
that the linearly polarized TEM ,, modes (/> 0) predicted by conventional
methods are not the resonant modes in an open resonator. Instead, two
other series of high-order modes are proposed with improved accuracy in
resonant frequencies.

I. NOMENCLATURE

¢ velocity of light,

D distance of separation between reflectors,
E electric field strength,

E, ¥(p, 0, 2)-exp(~ jkz),

f resonant frequency,

J /-1,

k propagation constant in free space,

! azimuthal mode number,

LI’,(x) generalized Laguerre polynomial,
L,(x) (d/dx)Ly(x),

p radial mode number,

q axial mode number,

R radius of curvature of the phase front,
R, radius of curvature of the reflector,
w radius of the beam wave,

Wo radius of the beam waist,

wy radius of the beam wave at z =D /2,
W energy stored,

2 unit vectors along the z direction,

A small increment,

0,0,z cylindrical coordinates,

® =arctan(z/z,) additional phase shift.

II. INTRODUCTION

From the approximate beam-wave theory [1], there exists a
complete set of linearly polarized Gaussian beam modes, which
are conventionally designated as TEM,,,. These modes can be
separated into two series, and can be represented by

{ 2 2
—(FLY 207\ ™ —p
b (2] 2] 2o )

w

k 2
.exp[—jkz+j(2p+l+1)¢—j%}cosl€ 1

{ 2 2 W A2
A ey

w

‘ ]
-exp —jk:+j(2p+l+1)®—j5%]smlﬂ )

where p and / are the radial and azimuthal mode numbers,
respectively. By combining two linearly polarized modes of the
same order, it is possible to synthesize other polarized modes in
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